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1 NETWORK DETAILS
We report the details of the network architecture in Table 1.

O-Predictor. The O-Predictor module has four main components: 1D Deconv, skip transformer(Trans),
Encoder1 and MLP. For the 1D Deconv, we list the input channel, the output channel, the convolution kernel
size, and the convolution stride. The Encoder1 includes five layers: 𝑆𝐴1, 𝑃𝑇1, 𝑆𝐴2, 𝑃𝑇2 and 𝑆𝐴3, where 𝑆𝐴 is
a single scale grouping version of set abstraction(SA) layers from Pointnet++[Qi et al. 2017] and 𝑃𝑇 is point
transformer(PT) block used in [Zhao et al. 2021]. The parameter 𝑆 denotes the number of downsampled points, 𝐾
denotes the number of nearest neighbors for each point and #𝑀𝐿𝑃 denotes the output channels for shared MLPs
in the SA layer. For the skip transformer, we list the output channels of𝑀𝐿𝑃𝐾 ,𝑀𝐿𝑃𝑄 and𝑀𝐿𝑃𝑉 . 𝐾 denotes the
number of nearest neighbors for each ray. Note that in this transformer, the key and query are first calculated by
𝑀𝐿𝑃𝐾 ,𝑀𝐿𝑃𝑄 , and then they are concatenated to be the input of𝑀𝐿𝑃𝑉 for the prediction of value. The audience
is referred to [Xiang et al. 2021] for more details about the skip transformer. For the MLP in the O-Predictor, we
list the size of its output channels.
O-Adjustment. There are two main components in O-Adjustment, which are Encoder2 and MLP. For the

Encoder2, #𝑀𝐿𝑃1 and #𝑀𝐿𝑃2 denote the output channels of the shared MLPs used in the PCN encoder. 𝐷𝑖𝑚𝑔

denotes the dimension of the initial global feature 𝑣 , and 𝐷𝑖𝑚𝑣 denotes the dimension of the final global feature 𝑔.
Refinement. The offset-constrained refinement contains 2 OCRUs. 𝑁𝑖𝑛 denotes the number of input points,

𝑁𝑜𝑢𝑡 denotes the number of output points.
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Table 1. The network architecture details.

O-Predictor

1D Deconv In channel Out channel Kernel size Stride
512 128 2048 1

Encoder1

Layer S K #MLP
𝑆𝐴1 512 16 [64, 128]
𝑃𝑇1 - 16 -
𝑆𝐴2 128 16 [128, 256]
𝑃𝑇2 - 16 -
𝑆𝐴3 - - [512, 512]

Skip Transformer 𝑀𝐿𝑃𝐾 𝑀𝐿𝑃𝑄 𝑀𝐿𝑃𝑉 K
[256,128,256] [256,128,256] [128,256] 16

MLP Out channel [256,128,4]

O-Adjustment Encoder2 #𝑀𝐿𝑃1 #𝑀𝐿𝑃2 𝐷𝑖𝑚𝑔 𝐷𝑖𝑚𝑣

[128, 256] [512, 512] 256 512
MLP Out channel [256,128,4]

Refinement
𝑁𝑖𝑛 𝑁𝑜𝑢𝑡

𝑂𝐶𝑅𝑈1 2048 2048
𝑂𝐶𝑅𝑈2 2048 16384

2 TRAINING DETAILS
We use Adam optimizer for training the network. Our training process includes three steps. First, we train the
initial completion module for 25 epochs with a batachsize of 32. The initial learning rate is 1e-3 and is decayed by
0.2 every 10 epochs. Second, we keep the parameters in the initial completion module unchanged, and train the
refinement module for 15 epochs with a batchsize of 32. The initial learning rate setting is the same as the last
training step. Third, we train the entire network for 5 epochs with the batchsize of 32. The leaning rate 1e-4 for
this step.

3 MORE EXPERIMENTS

3.1 Results for real scan
We test our method on real partial scans from the KITTI dataset [Geiger et al. 2013], which is captured by LiDAR,
so the partial scan data are very sparse and unevenly distributed. To apply our method to such data, we normalize
the partial scan into a unit cube and then estimate the viewpoint configuration. Finally, we generate the completed
point cloud based on the predicted viewpoint and our completion network trained from synthetic data. Some
completion results are shown in Fig 1. We find that given input partial scan and viewpoint with very different
distributions and features from our training data, our method can still complete the shape reasonably.

3.2 Evaluation and Comparison
The quantitative evaluation results for each category are reported in Table 2, Table 3 and Table 4.

From Table 2 we can see that our method achieves the best performance in terms of average CD and F-Score
on the MVP dataset. Compared to SnowflakeNet, 12 out of 16 categories of our results have lower CD values.
Although for the other four categories(car, cabinet, sofa and skateboard), our method has slightly higher CD, the
visual quality of the results is quite similar. For categories with more complex geometries (such as lamp, chair
and bookshelf), our method performs better than all other baseline methods.
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Table 2. Evaluation on MVP dataset in term of Chamfer distance and F-Score. The values are [𝐶𝐷/F-score]

Method PCN MSN ME-PCN VRCNet PoinTr PMP-
Net++

Snowflake-
Net

Ours (with
𝑉𝑖𝑒𝑤𝑝𝑟𝑒𝑑 )

Ours (with
𝑉𝑖𝑒𝑤𝐺𝑇 )

Airplane 2.825/0.784 1.808/0.845 1.734/0.839 2.027/0.876 1.450/0.867 1.199/0.872 1.040/0.922 1.040/0.908 0.841/0.926
Bed 9.985/0.434 9.414/0.508 8.776/0.502 8.496/0.583 8.513/0.547 6.487/0.535 4.995/0.665 5.597/0.643 4.698/0.666
Bench 5.582/0.645 3.902/0.734 4.115/0.714 5.066/0.790 2.968/0.788 2.737/0.751 2.279/0.856 2.157/0.844 1.826/0.864
Bookshelf 9.144/0.492 7.834/0.577 6.557/0.559 7.659/0.671 6.702/0.657 4.831/0.588 4.041/0.738 4.377/0.729 3.963/0.749
Bus 3.120/0.754 2.729/0.755 3.212/0.692 2.788/0.782 2.925/0.789 3.047/0.662 2.081/0.815 2.175/0.796 2.025/0.811
Cabinet 4.562/0.572 4.442/0.607 4.998/0.567 4.106/0.683 4.187/0.650 5.283/0.522 3.124/0.705 3.720/0.689 3.387/0.706
Car 3.666/0.631 3.430/0.642 3.651/0.616 3.343/0.701 3.136/0.676 3.757/0.563 2.449/0.727 2.713/0.701 2.568/0.718
Chair 9.044/0.487 6.829/0.599 6.708/0.591 6.234/0.679 4.946/0.653 4.341/0.649 3.628/0.756 3.571/0.736 3.358/0.758
Guitar 1.391/0.891 0.925/0.912 1.028/0.895 0.998/0.934 0.822/0.929 0.696/0.926 0.620/0.951 0.528/0.957 0.457/0.966
Lamp 14.41/0.472 10.71/0.626 8.960/0.630 12.31/0.688 7.524/0.646 3.209/0.771 4.496/0.812 2.733/0.817 2.441/0.839
Motorbike 3.995/0.644 2.926/0.699 3.210/0.676 2.521/0.797 2.293/0.748 2.200/0.698 1.711/0.816 1.673/0.809 1.627/0.818
Pistol 3.131/0.724 2.421/0.778 2.264/0.782 2.144/0.845 1.775/0.826 1.138/0.867 0.967/0.915 0.888/0.913 0.831/0.922
Skateboard 1.169/0.875 1.175/0.862 1.459/0.850 0.911/0.914 0.983/0.902 1.048/0.868 0.687/0.937 0.827/0.920 0.706/0.939
Sofa 5.851/0.535 5.203/0.593 5.126/0.558 5.024/0.643 4.395/0.633 4.361/0.561 3.139/0.710 3.214/0.681 3.208/0.702
Table 5.962/0.631 4.685/0.707 5.076/0.677 4.876/0.764 4.318/0.709 4.195/0.684 3.191/0.807 3.165/0.791 2.915/0.819
Watercraft 4.183/0.653 3.112/0.713 3.456/0.685 2.840/0.787 2.454/0.749 2.327/0.732 1.895/0.825 1.879/0.806 1.704/0.819
Average 5.907/0.617 4.749/0.682 4.680/0.662 4.780/0.741 3.882/0.715 3.381/0.687 2.696/0.796 2.635/0.781 2.419/0.800

Table 3. Evaluation on MVP dataset in term of 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2 (lower the better)

Method PCN MSN ME-PCN VRCNet PoinTr PMP-
Net++

Snowflake-
Net

Ours (with
𝑉𝑖𝑒𝑤𝑝𝑟𝑒𝑑 )

Ours (with
𝑉𝑖𝑒𝑤𝐺𝑇 )

Airplane 3.372/2.825 1.033/3.970 0.996/3.320 1.315/2.880 0.818/3.017 0.575/2.883 0.489/2.119 0.325/2.388 0.303/1.646
Bed 9.775/10.76 3.509/13.78 3.156/13.00 3.828/11.05 3.380/11.81 2.147/11.57 1.421/7.952 1.173/8.853 1.042/7.052
Bench 5.714/6.066 2.027/7.772 2.197/7.725 2.824/7.116 1.449/6.414 1.155/8.472 1.057/4.108 0.780/4.242 0.660/3.179
Bookshelf 8.711/9.911 3.670/11.67 2.722/9.626 3.303/10.02 2.385/9.376 2.578/9.222 1.327/6.546 1.124/6.894 0.825/5.981
Bus 2.220/3.668 1.129/3.879 1.335/4.562 1.404/3.851 1.274/3.877 1.541/5.260 0.663/3.361 0.748/3.131 0.680/2.824
Cabinet 3.839/5.255 1.540/6.253 1.647/7.012 1.504/5.314 1.466/5.421 2.159/8.710 0.905/4.516 0.989/5.056 0.972/4.491
Car 3.459/3.909 1.509/4.519 1.504/4.867 1.540/4.265 1.459/3.932 1.699/6.155 0.811/3.687 0.856/3.803 0.875/3.463
Chair 8.941/9.860 2.886/11.89 2.824/11.48 2.824/8.952 1.861/9.932 1.311/10.24 1.123/6.564 0.771/6.661 0.755/5.684
Guitar 1.579/1.394 0.566/1.680 0.587/1.688 0.771/1.258 0.570/1.181 0.719/1.253 0.337/1.204 0.254/0.942 0.229/0.764
Lamp 14.33/14.35 6.658/18.38 5.263/14.34 8.693/14.73 4.366/15.57 1.137/9.321 2.295/8.700 0.593/6.393 0.531/5.145
Motorbike 5.005/3.797 1.588/4.475 1.650/4.861 1.496/3.212 1.317/3.212 1.212/4.011 0.903/2.591 0.610/2.777 0.656/2.473
Pistol 3.667/3.067 1.336/3.936 1.102/3.632 1.128/2.827 1.010/2.988 0.889/2.081 0.433/1.725 0.323/1.597 0.304/1.394
Skateboard 1.232/1.488 0.608/2.797 0.741/2.827 0.492/1.695 0.599/1.638 0.835/2.710 0.352/1.467 0.349/1.939 0.321/1.302
Sofa 5.059/6.373 1.934/7.471 1.764/7.517 2.110/6.629 1.610/5.902 1.636/7.768 0.750/5.170 0.702/5.201 0.758/4.803
Table 6.652/7.155 1.691/8.764 2.055/8.681 1.994/7.238 1.505/10.01 1.544/9.188 0.984/5.848 0.742/5.613 0.668/4.936
Watercraft 4.251/4.328 1.523/4.825 1.706/5.355 1.351/4.052 1.147/3.818 1.090/5.054 0.620/3.695 0.468/3.720 0.452/3.071
Average 5.863/6.322 2.210/7.757 2.086/7.341 2.471/6.350 1.709/6.664 1.391/6.954 0.951/4.683 0.678/4.590 0.646/3.896
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Fig. 1. Completion results on KITTI dataset.

Table 4. Evaluation on MVP dataset in term of 𝐷𝐶𝐷 (lower the better)

Method PCN MSN ME-
PCN

VRC-
Net

PoinTr PMP-
Net++

Snowflake-
Net

Ours (with
𝑉𝑖𝑒𝑤𝑝𝑟𝑒𝑑 )

Ours
(with

𝑉𝑖𝑒𝑤𝐺𝑇 )

Airplane 0.569 0.614 0.641 0.498 0.606 0.666 0.492 0.515 0.482
Cabinet 0.644 0.638 0.652 0.534 0.58 0.719 0.537 0.543 0.526
Car 0.577 0.614 0.633 0.523 0.565 0.706 0.539 0.544 0.527
Chair 0.689 0.683 0.682 0.567 0.654 0.702 0.528 0.551 0.522
Lamp 0.730 0.720 0.719 0.620 0.721 0.707 0.573 0.577 0.548
Sofa 0.629 0.630 0.649 0.555 0.606 0.713 0.541 0.564 0.534
Table 0.629 0.628 0.646 0.507 0.603 0.685 0.481 0.498 0.466
Watercraft 0.622 0.649 0.657 0.541 0.628 0.698 0.544 0.560 0.540
Bed 0.691 0.685 0.689 0.600 0.661 0.721 0.565 0.586 0.563
Bench 0.647 0.651 0.653 0.530 0.605 0.690 0.491 0.506 0.480
Bookshelf 0.701 0.682 0.670 0.558 0.620 0.705 0.537 0.544 0.519
Bus 0.539 0.591 0.625 0.501 0.535 0.692 0.489 0.497 0.482
Guitar 0.522 0.614 0.643 0.486 0.574 0.659 0.478 0.478 0.450
Motorbike 0.601 0.643 0.665 0.534 0.595 0.703 0.554 0.559 0.542
Pistol 0.629 0.656 0.669 0.538 0.605 0.676 0.521 0.529 0.512
Skateboard 0.498 0.580 0.601 0.454 0.538 0.653 0.431 0.451 0.424
Average 0.628 0.645 0.658 0.539 0.613 0.696 0.524 0.538 0.513

In addition to CD and F-Score, we compute the SCD for all baseline methods on all categories. The results
are shown in Table 3. Our method achieves the lowest average 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2 across all categories in the MVP
dataset. For some categories such as cabinet, car and sofa, SnowflakeNet has lower 𝑆𝐶𝐷1 values but higher 𝑆𝐶𝐷2
compare to our method. For most categories, our method has the lowest 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2, which indicates our
method can improve the evaluation values by producing better shapes for both observed and unobserved parts.
We also report the detailed comparison results on DCD in Table 4. Our method has the lowest average DCD
value, with the lowest DCD for 14 out of 16 categories. Although our DCD values for the car and motorbike
categories are higher than VRC-Net, the visual quality of our results is better.
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Table 5. Evaluation on Front2Back dataset in term of 𝐶𝐷 − 𝐿1. (Category names are consistent with [Yao et al. 2020].)

Method plane bench cabinet car chair display lamp speaker rifle sofa table phone boat average

Front2Back 0.017 0.021 0.023 0.019 0.021 0.020 0.023 0.027 0.015 0.023 0.019 0.017 0.022 0.0206
Ours 0.009 0.014 0.020 0.012 0.016 0.026 0.011 0.025 0.004 0.014 0.014 0.011 0.008 0.0139

To show how much of the improvement comes from our method leveraging the extra information, we also
list the multiple category evaluation values for our approach without a GT viewpoint. From Table 2 and Table 3
we can see that without the GT viewpoint information, the CD, F-Score, 𝑆𝐶𝐷1 and 𝑆𝐶𝐷2 are all getting slightly
worse than our full method. However, these values are still better than that of all other baseline methods.

Finally, we compare our method with Front2Back [Yao et al. 2020], which has a similar key insight. The
front2Back method uses an occlusion mask from the input and predicts the points on “the other side". It uses
depth and normal estimation images as input. As converting our input to their format is not straightforward,
we apply our method to their dataset (rather than using it to our data). The quantitative comparison results are
shown in Table 5. Our method outperforms Front2Back in all categories. We think the reason is that using just
two points along each view ray is insufficient for shapes with a concave area or inside substructures, which is
quite common for 3D models. Our method can predict multiple points along each ray and generate better results.

3.3 Ablation Study on O-Predictor

Fig. 2. Ablation study: compare our method with the version that uses point attention instead of ray attention.

In our method, we apply a skip transformer in the offset prediction step that encodes the ray orientation
correlations (ray attention). Here we test another version that attention is based on the adjacency between input
points corresponding to each ray (point attention), like the point transformer [Zhao et al. 2021]. We compare the
result of this version to that of our method.
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Table 6. Ablation study on ray attention

Method 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

No ray attention 2.421 0.793 0.528 0.696 3.989
Ours 2.419 0.800 0.513 0.646 3.896

Table 7. Ablation study on the effect of each feature in O-Adjustment Module

Method 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

No 𝑓 2𝑔 2.411 0.788 0.532 0.632 4.139
No 𝑓 1𝑔 2.343 0.788 0.532 0.611 4.025
No [𝑓 1𝑝 , 𝑓 2𝑝 ] 2.381 0.783 0.539 0.628 4.151
No 𝑅 2.427 0.787 0.532 0.715 3.909
No 𝑃 2.404 0.786 0.535 0.722 3.904
Ours 2.419 0.800 0.513 0.646 3.896

From the quantitative comparison results(Table 6), we can see that when using the point attention instead of
ray attention, all evaluation values get slightly worse. The examples in Fig. 2 show that the result of our method
with ray attention can produce more precise offsets, so the final results contain less noisy points. Without the
ray attention, some points cannot reach the ideal locations and end up floating points around the object. This
proves that with the ray attention strategy, the transformer can extract a more useful correlation information
and improve the precision of the O-Predictor.

3.4 Ablation Study on O-Adjustment
In offset adjustment module we use feature 𝑓𝑝 together with the coarse global feature𝑓 2𝑔 to predict an adjustment
for each offset. 𝑓𝑝 is the concatenation of 𝑓 1𝑔 , [𝑓 1𝑝 , 𝑓 2𝑝 ], 𝑅 and 𝑃 . To justify the combination of these five features,
we test five versions of methods where each of the features is eliminated. The experimental results are shown in
Table 7.

We can see that without 𝑓 2𝑔 or [𝑓 1𝑝 , 𝑓 2𝑝 ], although𝐶𝐷 and 𝑆𝐶𝐷1 decrease slightly, the 𝑆𝐶𝐷2 increases by a large
margin. Without 𝑓 1𝑔 , the F-score, 𝐷𝐶𝐷 and 𝑆𝐶𝐷2 values get worse dramatically. When we remove the ray 𝑅 or
the input points 𝑃 , the performance of methods also decrease.

3.5 Offset Loss
In our experiments, we only use Chamfer Distance as the loss function. However, it is straightforward to think
about using an offset loss, which can provide a point-wise movement guidance. To calculate ground truth for
offset loss, we find the intersection points between each ray and the original 3D model. The ground truth offset
is then the distances from the first intersection point to each following intersection point along the ray. We
calculate 1 dimensional Chamfer distance between the predicted offset distance set 𝑂 and the ground truth offset
distance set 𝑂𝑔𝑡 . The offset loss can be computed by:

𝐶𝐷 (𝑂,𝑂𝑔𝑡 ) =
∑̂︁
𝑑∈𝑂

min
𝑑∈𝑂𝑔𝑡

| |𝑑 − 𝑑 | |22 +
∑︁
𝑑∈𝑂𝑔𝑡

min
𝑑∈𝑂

| |𝑑 − 𝑑 | |22 (1)

, Vol. 1, No. 1, Article . Publication date: September 2022.



Shape Completion with Points in the Shadow (Supplementary Material) • 7

Table 8. The effect of offset loss

Method 𝐶𝐷 F-Score 𝐷𝐶𝐷 𝑆𝐶𝐷1 𝑆𝐶𝐷2

With offset loss 2.424 0.797 0.517 0.681 3.905
Ours 2.419 0.800 0.513 0.646 3.896

For each ray, the number of predicted offsets in𝑂 is not necessarily equal to the number of ground truth offset
distances in 𝑂𝑔𝑡 . To compare the predicted offsets to the ground truth offset, which may be of different lengths,
we define the offset loss as the summation of 1-dimensional Chamfer distance between 𝑂 and 𝑂𝑔𝑡 along with 𝑁
rays. The loss can be described with the following equation:

𝐿offset =

𝑁∑︁
𝑖=1

𝐶𝐷 (𝑂𝑖 ,𝑂𝑔𝑡𝑖 ) (2)

We then combine the offset loss with the 𝐶𝐷 loss for training. The total loss is designed as:

𝐿 = 𝐿𝐶𝐷 + 𝜆𝐿offset (3)

In experiments, we find it is hard for the training process to converge with a large 𝜆 value, and we set 𝜆 as
0.001. The quantitative evaluation values for the version with and without the offset loss (ours) are shown in
table 8. As the performance is no improvement after using offset loss, we use 𝐿𝐶𝐷 in our method for simplicity.

3.6 Limitation

Fig. 3. The limitation of our method
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Our experiments demonstrate that our method can retain the details captured in the partial scan, which is
helpful for shapes with holes, concave area and thin structures. However, our method cannot generate correct
completion results if the detailed structure is not captured. For example, in Figure 3, the chair results cannot
recover the hole in the chair back, because the back is blocked by the seat. Therefore, maybe it is not reasonable
to produce a unique completion result for a partial scan. How to consider the user’s preference and produce
multiple possible completion solutions is still an open problem.

In the lamp example, the lower part of the cable is missing because of the insufficient accuracy of the capturing
device. It is difficult for our method to complete the missing cable as there are no completion rays of that missing
area. The low accuracy of the input causes such confusion. Making the completion methods more robust to
low-quality input data is also a problem worth exploring.

4 DETAILS ON VIEWPOINT PREDICTION
In Section 4.4 of our paper, we do an ablation study that assumes the viewpoint GT is not known. Because the
viewpoint configuration is key for the completion process, we need to predict it when the GT information is
not available. Although predicting viewpoint from the partial scan is not the focus of our paper, we provide a
possible way to estimate viewpoint location from the partial point cloud, based on which our method can get
satisfactory results. In the future, it would be quite helpful to find a more effective viewpoint prediction method,
which can make our completion system rely only on the partial scan data and become more general.

Fig. 4. Viewpoint prediction network

Viewpoint Prediction Network.We use a viewpoint prediction network similar to work in [Chen et al. 2021],
which uses PointNet++ for global feature extraction, and feed the global feature to fully connected layers for the
prediction of upright direction (a 3D vector). The structure of our viewpoint prediction network is illustrated in
Fig. 4. The input is the partial point cloud 𝑃 , and the predicted viewpoint is the output. We first use global feature
𝑔1 to predict an initial viewpoint 𝐶𝑎𝑚′, which is further improved by an adjustment to get the final predicted
viewpoint position𝐶𝑎𝑚. More specifically, we use PointNet++ to extract the global feature 𝑔1 for the partial point
cloud 𝑃 . 𝑔1 is then passed to fully connected layers to predict the initial viewpoint𝐶𝑎𝑚′. As the results of one-step
prediction are inaccurate to some extent, we use the camera rays computed by 𝑃 −𝐶𝑎𝑚′, to further estimate an
adjustment. We use the skip transformer(Trans) and the PointNet++ encoder to compute the adjustment value Δ.
The final result viewpoint is 𝐶𝑎𝑚′ + Δ.

Dataset for Training. We prepare partial scan and corresponding viewpoint pairs from the MVP dataset,
where the viewpoint is represented by a 3D unit vector on the sphere. The dataset is split into a training set
(62400 pairs) and a testing set (41600 pairs) in the same way as the completion dataset.

Training Details. We train the viewpoint prediction network with the Adam Optimizer. The initial learning
rate is 1e-6, and is decayed by 0.2 every 25 epochs. The viewpoint prediction network takes 100 epochs to
converge, and is then used as a black box for the completion system.
Result. The precision of viewpoint prediction results are listed in Table 9. In the second column of the table,

we list the average angle error for each category. In the last two columns, we list the percentage of samples that
with the angle error falls into the range 0◦ ∼ 5◦ and 5◦ ∼ 15◦. For each item in the table, we also list the results
with and without the adjustment step. From the table, we can see that, after viewpoint adjustment, the average
avg falls from 20.72 to 16.94, the overall Acc[0◦ ∼ 5◦] rises from 7% to 12%, and the Acc[5◦ ∼ 15◦] rise from
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Table 9. Evaluation of viewpoint prediction. The former values and the latter values are the values corresponding to viewpoints
before and after the adjustment. Avg represents average angle error. Acc[𝑎◦ ∼ 𝑏◦] means the percentage of samples whose
angle error falls in this range.

Category Avg Acc[0◦ ∼ 5◦] Acc[5◦ ∼ 15◦]

Airplane 20.41/15.98 7%/15% 37%/48%
Cabinet 16.62/14.84 7%/9% 43%/50%
Car 11.81/9.22 16%/27% 58%/61%
Chair 22.64/18.58 6%/9% 33%/45%
Lamp 28.76/23.96 5%/10% 27%/37%
Sofa 16.22/13.10 8%/12% 44%/56%
Table 25.13/21.16 4%/6% 27%/39%
Watercraft 22.74/18.95 7%/11% 35%/47%
Bed 23.72/20.39 5%/8% 32%/43%
Bench 30.35/25.72 4%/5% 23%/33%
Bookshelf 23.32/20.84 5%/7% 37%/42%
Bus 14.94/12.47 10%/17% 50%/55%
Guitar 19.94/14.39 7%/13% 37%/50%
Motorbike 18.27/11.98 6%/19% 40%/55%
Pistol 18.61/13.18 7%/13% 38%/53%
Skateboard 20.89/15.70 5%/14% 34%/46%
All 20.72/16.94 7%/12% 38%/48%

38% to 48%. At least 60% of the prediction corresponds to an error less than 15◦. It indicates that the adjustment
steps effectively improve the prediction precision. To visually compare the performance of our method with the
ablation version that uses the predicted viewpoint, we show some examples results with and without viewpoint
ground truth in Fig.5.

5 MORE RESULTS

5.1 Completion Results Visualized with Two Parts
We show some completion results visualized in two parts compared to other methods.

5.2 More Completion Results
We visualize more completion results for each category in Fig 7, Fig 8, Fig 9 and Fig 10.
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Fig. 5. predicting viewpoint comparison
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Fig. 6. The completion results are visualized with two parts for comparison. The blue points show the completion for observed
part, while yellow points show the completion for unobserved part.
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Fig. 7. More results part1.

, Vol. 1, No. 1, Article . Publication date: September 2022.



Shape Completion with Points in the Shadow (Supplementary Material) • 13

Fig. 8. More results part2.
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Fig. 9. More results part3.
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Fig. 10. More results part4.
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